Transforming of degree measure to radian one and back
  1.
  
   To find a radian measure of any angle by its given degree measure it  is necessary 
to multiply:
  
  
  
   a number of degrees by
  
   / 180
  / 180
   0.017453,
  
   a number of minutes – by
  0.017453,
  
   a number of minutes – by
  
   / (180 · 60 )
  / (180 · 60 )
   0.000291,
  0.000291,
  
  
   a number of  seconds  –  by
  
   / (180 · 60 · 60 )
  / (180 · 60 · 60 )
   0.000005
  
   and 
to add the found products.
  0.000005
  
   and 
to add the found products.
  
 
  E x a m p l e .  Find a radian measure of an angle 12° 30’ with an of the fourth accuracy
  
  decimal place.
 
  S o l u t i o n .  Multiply  12  by
   / 180 : 12  · 0.017453
  / 180 : 12  · 0.017453
   0.2094.
  0.2094.
  
  Multiply 30 by
   / (180 · 60 ) : 30 ·  0.000291
  / (180 · 60 ) : 30 ·  0.000291
   0.0087.
  0.0087.
  
  Now we find:
  
  12°30’
   0.2094 + 0.0087 = 0.2181 rad.
  0.2094 + 0.0087 = 0.2181 rad.
 
  2.
  
   To find a degree measure of any  angle by its given radian measure it is necessary 
to multiply
   
   a number of radians by
  
  180° /
   
   57°.296 = 57°17’45” ( a relative error of the result will be ~ 0.0004%,
  57°.296 = 57°17’45” ( a relative error of the result will be ~ 0.0004%,
  
  that corresponds to an absolute error ~ 5” for a round angle 360° ).
 
E x a m p l e . Find a degree measure of an angle 1.4 rad. with an accuracy up to 1’.
  S o l u t i o n .  We’ll find consequently:
  
  1 rad
   57°17’45”  ;
  57°17’45”  ;
  
  0.4 rad
   0.4 · 57°.296 = 22°.9184;
  0.4 · 57°.296 = 22°.9184;
  
  0°.9184 · 60
   55’.104;
  55’.104;
  
  0’.104 · 60
   6”.
  6”.
  
  So,  0.4 rad
   22°55’6” and hence:
  22°55’6” and hence:
 
  1 rad
   57°17’45”
  57°17’45”
  
  +
  
  0.4 rad
   22°55’6”
  22°55’6”
  
  _____________________
 
  1.4 rad
   80°12’51”
  80°12’51”
 
  After  rounding this result according to the required  accuracy up to 1’
  
  we have finally: 1.4 rad
   80°13’.
  80°13’.